List 8

Polynomials

A polynomial in \boldsymbol{x} is a function that can be written in the form

$$
\ldots x^{n}+\ldots x^{n-1}+\cdots+\ldots x^{2}+\ldots x+\ldots,
$$

where each blank - called a coefficient-is a real or complex number, possibly including zero. A real polynomial is one whose coefficients are real numbers. In general, variables other than x can also be used (when complex numbers are involved, it is common, but not required, to use the variable z).

The degree of $f(x)$ is the highest power of x that has a non-zero coefficient.
187. Which of the following are polynomials (in any variable)?
(a) $8 x^{2}+4 x+1$
(d) $\left(z^{5}-2 z+1\right)(z+1)$
(g) $x^{2}+2^{x}$
(b) $8 z^{2}+4 z+1$
(e) $\left(z^{5}-2 z+1\right) \sin (z)$
(h) $\sqrt{x^{4}+2 x^{2}+1}$
(c) $x^{10}+5 x^{6}-100 x$
(f) $3 x^{2}+3 x^{1 / 2}-4$
(i) $z+\bar{z}$
188. Which of the following are real polynomials (in any variable)?
(a) $8 x^{2}+4 x+1$
(c) $z^{2}+1$
(e) $(2+i) x+(4-i)$
(b) $8 z^{2}+4 z+1$
(d) $z^{2}+i$
(f) $(z+i)(z-i)$
189. For each of the following, give the degree if the expression is a polynomial in x, and otherwise write "not a polynomial".
(a) $\frac{5}{2} x^{3}-7 x+8$
(e) $\left(x^{2}+2 x-1\right)^{3}$
(i) $\frac{8 x+1}{2 x}$
(b) $9 x^{10}$
(f) $5 x$
(c) $6 x^{5}+\frac{1}{3} x+5 x^{-2}$
(g) 5
(j) $\frac{x^{3}+7 x}{2}$
(d) $3 x^{2}+\sin (x)$
*(h) 0

The number c is a zero (also called a root) of the polynomial $f(x)$ if $f(c)=0$.
190. Find all the zeroes of $2 x^{2}+x-15$.
191. A cannonball fired at $400 \mathrm{~m} / \mathrm{s}$ at an angle of 52° will have an initial vertical velocity of $400 \sin \left(52^{\circ}\right) \approx 315.2 \mathrm{~m} / \mathrm{s}$, and it will have a height of

$$
h(t)=\frac{-9.8}{2} t^{2}+315.2 t
$$

meters after t seconds. How many seconds will it take for the cannonball to reach the ground?
192. Find all the roots of $x^{5}-6 x^{4}+34 x^{3}$.
193. Given that 4 is one zero of $z^{3}-4 z^{2}+49 z-196$, find all its roots.
194. Given that $1+2 i$ is a zero of $z^{4}-4 z^{3}+12 z^{2}-16 z+15$, find all its zeros.
195. The figure below shows four points on the complex plane.

Give an example of a polynomial of degree 4 whose roots are exactly these four points.
196. The figure below shows four points on the complex plane.

(a) Does there exist a polynomial with real coefficients whose roots are exactly these four points? Why or why not?
(b) Does there exist a polynomial with complex coefficients whose roots are exactly these four points? Why or why not?
197. Does there exist a polynomial $f(x)$ with integer coefficients for which...
(a) $f(35)=0$ and $f(7)=0$?
(b) $f(0)=35$ and $f(7)=0$?
(c) $f(0)=53$ and $f(7)=0$?
(d) $f(3 i)=5$ and $f(-3 i)=0$?
198. Does there exist a polynomial $f(x)$ with real coefficients for which...
(a) $f(35)=0$ and $f(7)=0$?
(b)-(d) each other condition from Task 197?
199. Does there exist a polynomial $f(x)$ with complex coefficients for which...
(a) $f(35)=0$ and $f(7)=0$?
(b)-(d) each other condition from Task 197?
200. Give the polynomial

$$
f(x)=x^{3}+\ldots x^{2}+_x+_
$$

for which $f(-1)=0, f(3)=0$, and $f(4)=0$.
A polynomial is reducible if it can be factored into two non-constant polynomials; if not, it is irreducible. Whether a polynomial is reducible can depend on what kinds of numbers (e.g., real or complex) are allowed for the coefficients.
201. Are there polynomials $f(x)$ and $g(x)$ such that $f \cdot g=x^{2}-25$? Is $x^{2}-25$ reducible or irreducible?
202. (a) Are there real polynomials f and g such that $f \cdot g=x^{2}+9$?
(b) Are there non-constant real polynomials f and g such that $f \cdot g=x^{2}+9$?
(c) Are there non-constant polynomials f and g such that $f \cdot g=x^{2}+9$? Hint: $(3 i)^{2}=-9$.
¿203. (a) Is 19 prime? Why or why not?
(b) Is 13 prime? Why or why not?
(c) Is 11 prime? Why or why not?
(d) Re-read Task 177 and then re-read 203(b).
204. For the polynomial

$$
f(z)=z^{4}+z^{3}+z^{2}+3 z-6=\left(z^{2}+z-2\right)\left(z^{2}+3\right),
$$

(a) find all roots of $f(z)$.
(b) find all zeros of $f(z)$.
(c) solve $f(z)=0$ for complex z.
(d) factor $f(z)$ into linear complex factors.
(e) factor $f(z)$ into irreducible complex factors.
205. Factor the following polynomials into irreducible real factors:
(a) $x^{3}+x^{2}+x+1$
(b) $x^{3}+x^{2}-x-1$
(c) $x^{4}-4 x^{3}+8 x$
(d) $x^{4}+5 x^{2}+6$
206. Factor the following polynomials into irreducible complex factors:
(a) $z^{3}+z^{2}+z+1$
(b) $z^{3}+z^{2}-z-1$
(c) $z^{4}-4 z^{3}+8 z$
(d) $z^{4}+5 z^{2}+6$
207. Factor the polynomials

$$
\begin{aligned}
& F(x)=x^{3}-6 x^{2}-27 x+140 \\
& P(x)=x^{3}-14 x^{2}+74 x-136
\end{aligned}
$$

into irreducible real polynomials, knowing that $F(4)=P(4)=0$.
208. Factor the polynomials from Task 207 into irreducible complex polynomials.

If r is root of the polynomial f, the multiplicity of r is the highest power m for which $(x-r)^{m}$ is a factor of f.
209. For $f(x)=(z-3)^{4}(z+2)$, what is the multiplicity of 3 ?
210. For $g(z)=z^{3}+2 z^{2}-7 z+4$, what is the multiplicity of 1 ?
211. The only roots of $z^{5}-4 z^{4}+z^{3}+10 z^{2}-4 z-8$ are -1 (with some multiplicity) and +2 (with some multiplicity). What is the sum of these multiplicities?
212. (a) On a real number line (like the blank one shown below), put a dot at every point x for which $x^{6}=1$.

(b) On a complex plane (like the blank one shown below), put a dot at every point z for which $z^{6}=1$.

213. (a) Find all the roots of $f(z)=1+z+z^{2}$.
(b) Find all the roots of $g(x)=1+x^{2}+x^{4}$. (x can be complex)
(c) Find all the roots of $h(z)=1+z+z^{2}+z^{3}+z^{4}+z^{5}$. Hint: $h(z)=\frac{1-z^{6}}{1-z}$.
214. Find the sum of all the roots (that is, add them together) of the polynomial

$$
1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9} .
$$

